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Abstract The word proposition is used in physics with different meanings, which must
be distinguished to avoid interpretational problems. We construct two languages L∗(x) and
L(x) with classical set-theoretical semantics which allow us to illustrate those meanings
and to show that the non-Boolean lattice of propositions of quantum logic (QL) can be
obtained by selecting a subset of p-testable propositions within the Boolean lattice of all
propositions associated with sentences of L(x). Yet, the aforesaid semantics is incompati-
ble with the standard interpretation of quantum mechanics (QM) because of known no-go
theorems. But if one accepts our criticism of these theorems and the ensuing SR (semantic
realism) interpretation of QM, the incompatibility disappears, and the classical and quan-
tum notions of truth can coexist, since they refer to different metalinguistic concepts (truth
and verifiability according to QM, respectively). Moreover one can construct a quantum
language LT Q(x) whose Lindenbaum–Tarski algebra is isomorphic to QL, the sentences of
which state (testable) properties of individual samples of physical systems, while standard
QL does not bear this interpretation.

Keywords Quantum mechanics · Proposition · Classical truth · Quantum truth ·
Verifiability

1 Introduction

The word proposition has been used in physics with some different meanings. Jauch [20]
intended it simply as a synonym of yes-no experiment, Piron [23] denoted by it an equiv-
alence class of questions, etc., following a tradition started by Birkhoff and von Neumann
[4] with their experimental propositions. On the other hand, the same term is also used in
order to denote the (closed) set of states associated with an experimental proposition, often
called physical proposition (see, e.g., [7], Introduction to Part I). The latter use is commonly
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preferred by those logicians concerned with quantum logic (QL) who identify states with
possible worlds (ibid., Chap. 8). For, an experimental proposition can be considered as a
sentence of a physical language, and the set of states associated with it as its proposition in
a standard logical sense. However, the term proposition is also used to denote an element of
the Lindenbaum–Tarski algebra of the aforesaid physical language (see, e.g., [25], Chap. 5;
the links between these meanings are rather obvious).

Let us adopt from now on the standard logical meaning of the term proposition, accept-
ing to identify physical states with possible worlds (which may be questioned from several
viewpoints; we, however, do not want to discuss this topic in the present paper). Then, a
serious problem occurs when dealing with quantum mechanics (QM), hence with QL. In-
deed, every Birkhoff and von Neumann’s experimental proposition can be experimentally
confirmed or refuted (see also [19], Chap. 8), so that it can be interpreted as a sentence α

of an observative language, stating a physical property that can be tested on one or more
individual samples of a given physical system (physical objects). In classical mechanics
(CM) a truth value is defined for every (atomic or molecular) sentence α, and the physical
proposition pα of α (meant as a set of states in which α is true) is introduced basing on
this definition. On the contrary, it can occur in QM that no truth value can be defined for
a sentence α because of nonobjectivity of properties (equivalently, the distinction between
actual and potential properties), which is a well known and debated feature of this theory
(see, e.g., [5], Chap. II; [22]). Indeed, nonobjectivity prohibits one to associate a physical
property E with a set of physical objects possessing E, which is a basic step if one wants
to construct a classical set-theoretical semantics. Hence, a physical proposition is directly
associated, in QM, with α, whose truth value is defined via the proposition itself. This gives
rise to a number of difficulties, since the notion of truth introduced in this way has several
odd features. For instance, if a sentence is not true in a possible world (state), one cannot as-
sert that it is false in that world, and the join of two sentences may be true even if none of the
sentences is true. More important, this notion of truth clashes with the fact that every (ele-
mentary) experimental proposition can be checked on a physical object, yielding one of two
values (0 or 1) that can be intuitively interpreted as true and false. Thus, the identification of
sentences with their propositions may produce serious troubles (the “metaphysical disaster”
pointed out, though in a somewhat different way, by Foulis and Randall [24]). According
to Dalla Chiara et al. ([7], Chap. 1) this problem stimulated the investigation about more
and more general quantum structures. In our opinion, however, the attempt at solving it in
this way is questionable. Indeed, the problem is originated by some specific features of the
standard interpretation of the mathematical formalism of QM (to be precise, the aforesaid
nonobjectivity of properties) and not by the formalism itself, so that it cannot be solved by
simply generalizing the mathematical apparatus without removing those peculiarities of the
interpretation that create it (see also [6]).

According to a widespread belief, the impossibility of solving the above problem by
firstly endowing the language of QM with a classical set-theoretical semantics and then
introducing the set of propositions is witnessed by the fact that this set has a structure of
orthomodular nondistributive lattice, while a classical semantics would lead to a Boolean
lattice of propositions.

We aim to show in this paper that the above belief is ill-founded. To be precise, we want to
show that one can construct a simple language L(x) endowed with a classical set-theoretical
semantics, associate it with a poset of physical propositions (that generally is not a lattice),
and then introduce a definition of testability on L(x) which selects a subposet of testable
(actually, p-testable, see Sect. 4) physical propositions. Our procedure is very intuitive, and
applies to every theory, as CM and QM, in which physical objects and properties can be
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defined. Under reasonable physical assumptions the poset of all testable physical proposi-
tions turns out to be a Boolean lattice in CM, while it is an orthomodular nondistributive
lattice in QM that can be identified with a (standard, sharp) QL. It follows, in particular, that
nondistributivity cannot be considered an evidence that a classical notion of truth cannot be
introduced in QM.

Our result does not prove, of course, that providing a classical semantics for the obser-
vative language of QM is actually possible. Indeed, nonobjectivity of properties would still
forbid it. However, should one accept the criticism to nonobjectivity provided by ourselves
in some previous paper, and the Semantic Realism (SR) interpretation of QM following from
it (see [9–15]),1 the language L(x) introduced in this paper appears as a sublanguage of the
broader observative language of QM, and the classical set-theoretical semantics defined on
it can be seen as a restriction of the broader classical set-theoretical semantics that can be
defined on the observative language. If this viewpoint is accepted, the distinction between
physical propositions and testable physical propositions can be considered something more
than an abstract scheme for showing how non-Boolean algebras can be recovered within
a Boolean framework. Indeed, physical propositions are then associated in a standard way
with (universally) quantified sentences of L(x) that have classical truth values, which avoids
the “metaphysical disaster” mentioned above, and testable physical propositions are physi-
cal propositions associated with quantified sentences for which truth criteria are given that
allow one to determine empirically their truth values.2

The lattice operations on the lattice of all testable physical propositions, however, only
partially correspond to logical operations of L(x) in QM. We show that L(x) can be en-
riched by introducing new quantum connectives, so that a language LT Q(x) of testable sen-
tences can be extracted from L(x) whose Lindenbaum–Tarski algebra is isomorphic to the
orthomodular lattice of all testable physical propositions of L(x). Thus, we introduce a clear
distinction between classical and quantum connectives, and show that a verificationist notion
of quantum truth can be defined on LT Q(x) which coexists with the classical definition of
truth, rather than being alternative to it. This is a noticeable achievement, which avoids pos-
tulating that different incompatible notions of truth are implicitly introduced by our physical
reasonings.

Some of the results resumed above have already been expounded in some previous papers
[16, 17], though in a somewhat different form. Here we generalize our previous treatments

1We remind that our criticism is based on an epistemological perspective according to which the theoret-
ical laws of any physical theory are considered as mathematical schemes from which empirical laws can
be deduced. The latter laws are assumed to be valid in all those physical situations in which they can be
experimentally checked, while no assumption of validity can be done in physical situations in which some
general principle prohibits one to check them (this position is consistent, in particular, with the operational
and antimetaphysical attitude of standard QM). In CM our perspective does not introduce any substantial
change, since there is no physical situation in which an empirical law cannot, in principle, be tested. On the
contrary, if boundary, or initial, conditions are given in QM which attribute noncompatible properties to the
physical system (more precisely, to a sample of it), a physical situation is hypothesized that cannot be em-
pirically accessible, hence no assumption of validity can be done for the empirical laws deduced from the
general formalism of QM in this situation. Strangely enough, this new perspective is sufficient to invalidate
the proof of some important no-go theorems, as Bell’s [1] and Bell–Kochen–Specker’s [2, 18]. Nonobjec-
tivity of properties then appears in this context as an interpretative choice, not a logical consequence of the
theory, and alternative interpretations become possible. Among these, our SR interpretation restores objectiv-
ity of properties without requiring any change in the mathematical apparatus and in the minimal (statistical)
interpretation of QM.
2From a logical viewpoint our treatment exhibits the deep reasons of the “disaster”. Indeed, experimental
propositions are interpreted as open sentences of a first order predicate language, while physical propositions
are associated with quantified sentences of the same language.
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by considering effects in place of properties, which leads us to preliminarily construct a
broader language L∗(x) in which L(x) is embedded. An interesting consequence of this
broader perspective is a weakening of the notion of testability, which illustrates from our
present viewpoint a possible advantage of unsharp QM with respect to standard QM. We
also provide a simple new way for defining physical propositions by introducing universal
quantifiers on the sentences of the language L∗(x), which also helps in better understanding
the notion of quantum truth and its difference from classical truth. For the sake of brevity,
however, our presentation is very schematic and essential.

It remains to observe that a more general treatment of the topics discussed in this paper
could be done by adopting the formalization of an observative sublanguage of QM intro-
duced by ourselves many years ago [8]. In this case, two classes of predicates would oc-
cur, one denoting effects (hence properties), one denoting states, so that states would not
be identified with possible worlds and physical propositions would be distinguished from
propositions in a standard logical sense. This treatment would be more general and formally
complete, at the expense, however, of simplicity and understandability, so that we do not
undertake this task here.

2 The Language of Effects L∗(x)

We call L∗(x) the formal language constructed by means of the following symbols and rules.

Alphabet.
An individual variable x.
Monadic predicates E, F , . . . .
Logical connectives ¬, ∧, ∨.
Auxiliary signs (, ).

Syntax.
Standard classical formation rules for well formed formulas (briefly, wffs).

We introduce a set-theoretical semantics on L∗(x) by means of the following metalin-
guistic symbols, sets and rules.

E∗: the set of all predicates.
Φ∗(x): the set of all wffs of L∗(x).
E∗(x): the set {E(x) | E ∈ E∗} of all elementary wffs of L∗(x).
A set S of states.
For every S ∈ S , a universe US of physical objects.
A set R of mappings (interpretations) such that, for every ρ ∈ R, ρ : (x, S) ∈ {x} ×

S → ρS(x) ∈ US .
For every S ∈ S and E ∈ E∗, an extension extS(E) ⊆ US .
For every ρ ∈ R and S ∈ S , a classical assignment function σ

ρ

S : Φ∗(x) → {t, f } (where
t stands for true and f for false), defined according to standard (recursive) truth rules in
Tarskian semantics (to be precise, for every elementary wff E(x) ∈ E∗(x), σ

ρ

S (E(x)) = t

iff ρS(x) ∈ extS(E), for every pair α(x), β(x) of wffs of Φ∗(x), σ
ρ

S (α(x) ∧ β(x)) = t iff
σ

ρ

S (α(x)) = t = σ
ρ

S (β(x)), etc.).

The intended physical interpretation of L∗(x) can then be summarized as follows.
Reference to a physical system Σ is understood.
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A predicate of L∗(x) denotes an effect, which is operationally interpreted as an equiv-
alence class of (dichotomic) registering devices, each of which, when activated by an in-
dividual sample of Σ , performs a registration that may yield value 0 or 1 (see, e.g., [21],
Chap. II; [14, 15]). We assume in the following that every registering device belongs to an
effect.

A state is operationally interpreted as an equivalence class of preparing devices, each of
which, when activated, performs a preparation of an individual sample of Σ (ibid.).

A physical object is operationally interpreted as an individual sample of Σ , which can
be identified with a preparation (ibid.).

The equation σ
ρ

S (E(x)) = t (or f ) is interpreted as meaning that, if a registering device
belonging to E is activated by the physical object ρS(x), the result of the registration is 1
(or 0). The interpretation of σ

ρ

S (α(x)) = t (or f), with α(x) ∈ Φ∗(x), follows in an obvious
way, bearing in mind the above truth rules for the connectives ¬,∧,∨.

Let us now introduce some further definitions and notions.
(i) We define a logical preorder < and a logical equivalence ≡ on Φ∗(x) in a standard

way, as follows.
Let α(x), β(x) ∈ Φ∗(x). Then,

α(x) < β(x) iff for every ρ ∈ R and S ∈ S, σ
ρ

S (α(x)) = t implies σ
ρ

S (β(x)) = t,

α(x) ≡ β(x) iff α(x) < β(x) and β(x) < α(x).

We note that the quotient set Φ∗(x)/ ≡ is partially ordered by the order (still de-
noted by <) canonically induced on it by the preorder <. It easy to prove that the poset
(Φ∗(x)/ ≡,<) is a Boolean lattice.

(ii) Let α(x) ∈ Φ∗(x). We call physical sentence associated with α(x) the (universally)
quantified sentence (∀x)α(x), and denote by Ψ ∗ the set of all physical sentences associated
with wffs of L∗(x) (hence Ψ ∗ = {(∀x)α(x) | α(x) ∈ Φ∗(x)}). Then, for every S ∈ S , we
introduce a classical assignment function σS : Ψ ∗ → {t, f } by setting, for every physical
sentence (∀x)α(x) ∈ Ψ ∗,

σS((∀x)α(x)) = t iff for every ρ ∈ R, σ
ρ

S (α(x)) = t.

The logical preorder and equivalence defined on Φ∗(x) can be extended to Ψ ∗ in a stan-
dard way, as follows.

Let (∀x)α(x), (∀x)β(x) ∈ Ψ ∗. Then,

(∀x)α(x) < (∀x)β(x) iff for every S ∈ S, σS((∀x)α(x)) = t implies σS((∀x)β(x)) = t,

(∀x)α(x) ≡ (∀x)β(x) iff (∀x)α(x) < (∀x)β(x) and (∀x)β(x) < (∀x)α(x).

The quotient set Ψ ∗/ ≡ is partially ordered by the order (still denoted by <) canonically
induced on it by the preorder <, but the poset (Ψ ∗/ ≡,<) is not bound to be a lattice.

(iii) We use the definitions in (ii) to introduce a notion of true with certainty on Φ∗(x).
For every α(x) ∈ Φ∗(x) and S ∈ S , we put

α(x) is certainly true in S iff σS((∀x)α(x)) = t

(equivalently, the physical sentence (∀x)α(x)) associated with α(x) is true).

A wff α(x) ∈ Φ∗(x) can be certainly true in the state S or not. It must be stressed that in
the latter case we do not say that α(x) is certainly false in S: this term will be introduced
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indeed at a later stage, with a different meaning. We also note explicitly that the new truth
value is attributed or not to a wff of Φ∗(x) independently of a specific interpretation ρ.

The notion of true with certainty allows one to introduce a physical preorder ≺ and a
physical equivalence ≈ on Φ∗(x), as follows.

Let α(x), β(x) ∈ Φ∗(x). Then,

α(x) ≺ β(x) iff for every S ∈ S, α(x) certainly true in S implies

β(x) certainly true in S (equivalently, (∀x)α(x)) < (∀x)β(x)).

α(x) ≈ β(x) iff α(x) ≺ β(x) and β(x) ≺ α(x) (equivalently, (∀x)α(x) ≡ (∀x)β(x)).

It is apparent that the logical preorder < and the logical equivalence ≡ on Φ∗(x) imply
the physical preorder ≺ and the physical equivalence ≈, respectively, while the converse
implications generally do not hold. Moreover, one can introduce the quotient set Φ∗(x)/ ≈,
partially ordered by the order (still denoted by ≺) canonically induced on it by the preorder
≺ defined on Φ∗(x). Then, the posets (Φ∗(x)/ ≈,≺) and (Ψ ∗/ ≡,<) are obviously order-
isomorphic.

(iv) We want to introduce a concept of testability on Φ∗(x). To this end, let us consider
an elementary wff E(x) ∈ Φ∗(x) and observe that it is testable in the sense that its truth
value for a given interpretation ρ and state S can be empirically checked by using one
of the registering devices in the class denoted by E in order to perform a registration on
ρS(x). Let us consider now a molecular wff α(x) of Φ∗(x) and agree that it is testable iff
a registering device exists that allows us to check its truth value. Since we have assumed
that every registering device belongs to an effect, we conclude that α(x) is testable iff it is
logically equivalent to an elementary wff of Φ∗(x). Thus, we introduce the subset Φ∗

T (x) of
all testable wffs of Φ∗(x), defined as follows.

Φ∗
T (x) = {α(x) ∈ Φ∗(x) | ∃Eα ∈ E∗ : α(x) ≡ Eα(x)}.

Of course, the binary relations <, ≡, ≺ and ≈ introduced on Φ∗(x) can be restricted to
Φ∗

T (x), and we still denote these restrictions by the symbols <, ≡, ≺ and ≈, respectively, in
the following.

(v) The notion of testability can be extended to the physical sentences associated with
wffs of Φ∗(x) by setting, for every α(x) ∈ Φ∗(x),

(∀x)α(x) is testable iff α(x) is testable (equivalently, α(x) ∈ Φ∗
T (x)).

We denote the set of all testable physical sentences by Ψ ∗
T (hence, Ψ ∗

T = {(∀x)α(x) | α(x) ∈
Φ∗

T (x)}), and still denote the restrictions to Ψ ∗
T of the binary relations < and ≡ defined on

Ψ ∗ by < and ≡, respectively. It is then easy to show that the posets (Φ∗
T (x)/ ≈,≺) and

(Ψ ∗
T / ≡,<) are order-isomorphic.

3 Physical Propositions

Let α(x) ∈ Φ∗(x). We put

pf
α = {S ∈ S | α(x) is certainly true in S},

and say that pf
α is the physical proposition associated with α(x) (or, briefly, the physi-

cal proposition of α(x)). It is then easy to see that pf
α is the proposition associated with
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(∀x)α(x) according to the standard rules of a Kripkean semantics in which states play the
role of possible worlds. More formally,

pf
α = {S ∈ S | σS((∀x)α(x)) = t} = {S ∈ S | for every ρ ∈ R, σ

ρ

S (α(x)) = t}.
We denote by P∗f the set of all physical propositions of wffs of Φ∗(x),

P∗f = {pf
α | α(x) ∈ Φ∗(x)}.

The definitions of certainly true in S, physical order ≺ and physical equivalence ≈ can be
restated by using the notion of physical proposition. Indeed, for every α(x), β(x) ∈ Φ∗(x),

α(x) is certainly true in S iff S ∈ pf
α ,

α(x) ≺ β(x) iff pf
α ⊆ p

f

β ,

α(x) ≈ β(x) iff pf
α = p

f

β .

The above results imply that the posets (Φ∗(x)/ ≈,≺) (or (Ψ ∗/ ≡,<)) and (P∗f ,⊆)

are order-isomorphic.3 However, the set-theoretical operations on P∗f do not generally cor-
respond to logical operations on Φ∗(x). Indeed, for every α(x), β(x), γ (x) ∈ Φ∗(x), one
gets

α(x) ≡ ¬β(x) implies pf
α ⊆ S\pf

β ,

α(x) ≡ β(x) ∧ γ (x) implies pf
α = p

f

β ∩ pf
γ ,

α(x) ≡ β(x) ∨ γ (x) implies pf
α ⊇ p

f

β ∪ pf
γ

(see also [17]).
Let us consider now the subset Φ∗

T (x) of all testable wffs of Φ∗(x) introduced in Sect. 2.
We define the subset P∗f

T ⊆ P∗f of all testable physical propositions by setting

P∗f

T = {pf
α | α(x) ∈ Φ∗

T (x)}.

Then, one gets that P∗f

T coincides with the set of all physical propositions associated
with elementary wffs of Φ∗(x). Moreover, the posets (Φ∗

T (x)/ ≈,≺) (or (Ψ ∗
T / ≡,<)) and

(P∗f

T ,⊆) are order-isomorphic.

4 The Language of Properties L(x)

Both in CM and in QM the set of all effects contains a subset of decision effects (see, e.g.,
[21], Chap. III) that we briefly call properties in this paper. Hence the set E∗ of all predicates
of L∗(x) contains a subset E of predicates denoting properties. Therefore one can consider
the sublanguage L(x) of L∗(x) constructed by using only predicates in E and following the

3This isomorphism suggests that one could introduce the notion of true with certainty by firstly assigning

(P∗f ,⊆) with its algebraic structure and then connecting it with Φ∗(x), thus providing an algebraic seman-
tics which allows one to avoid the introduction of a classical truth theory. One would thus follow standard
procedures in QL, yet losing the links between two different notions of truth illustrated in this paper.
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procedures summarized in Sect. 2. Thus, the set of all wffs of L(x), the set of all elementary
wffs of L(x), the semantics and the physical interpretation of L(x), the logical preorder and
equivalence on L(x), etc., are defined as in Sect. 2, simply dropping the suffix ∗. Hence one
obtains that the poset (Φ(x)/ ≡,<) is a Boolean lattice and that the posets (Φ(x)/ ≈,≺)

and (Ψ/ ≡,<) are order-isomorphic. Moreover, the set ΦT (x) of all testable wffs of L(x) is
defined as follows,

ΦT (x) = {α(x) ∈ Φ(x) | ∃Eα ∈ E : α(x) ≡ Eα(x)},
and the posets (ΦT (x)/ ≈,≺) and (ΨT / ≡,<) are order-isomorphic. It must be noted, how-
ever, that the notion of testability introduced in this way on Φ(x) does not coincide with the
notion of testability following from the general definition in Sect. 2. Indeed, according to
the latter, the set of all testable wffs of Φ(x) would be given by

Φ ′
T (x) = {α(x) ∈ Φ(x) | ∃Eα ∈ E∗ : α(x) ≡ Eα(x)},

which implies ΦT (x) ⊆ Φ ′
T (x), so that ΦT (x) and Φ ′

T (x) cannot, in general, be identified.
Therefore we call p-testability the more restrictive notion of testability introduced here. We
notice that the broadening of the set of testable wffs of Φ(x) following from considering the
language of effects illustrates from our present viewpoint one of the known advantages of
unsharp QM with respect to standard QM. Exploring this topic goes, however, beyond the
scopes of the present paper.

Let us come now to propositions. The set Pf of all physical propositions associated with
wffs of Φ(x) can be defined as in Sect. 3, replacing Φ∗(x) by Φ(x). Again, no change
is required, but dropping the suffix ∗. Hence, proceeding as in Sect. 3, one can show that
the posets (Φ(x)/ ≈,≺) (or (Ψ/ ≡,<)) and (Pf ,⊆) are order-isomorphic. One can then
introduce the subset

Pf

T = {pf
α ∈ Pf | α(x) ∈ ΦT (x)} ⊆ Pf

of all p-testable physical propositions and the subset

Pf ′
T = {pf

α ∈ Pf | α(x) ∈ Φ ′
T (x)} ⊆ Pf

of all testable physical propositions (with Pf

T ⊆ Pf ′
T ). The distinction between Pf

T and Pf ′
T is

relevant in principle. However, we are only concerned with the subset Pf

T in the following.
One easily gets, proceeding as in Sect. 3, that Pf

T coincides with the set of all physical
propositions associated with elementary wffs of Φ(x), and that the posets (ΦT (x)/ ≈,≺)

(or (ΨT / ≡,<)) and (Pf

T ,⊆) are order-isomorphic.

5 Physical Propositions in Classical Mechanics

One can consider specific physical theories within the general scheme worked out in
Sects. 2–4 by inserting in it suitable assumptions suggested by the intended interpretation in
Sect. 2. In the case of CM, this leads to the collapse of a number of notions, which explains
why some relevant conceptual differences have been overlooked in classical physics. Let us
discuss briefly this issue.

First of all, all physical objects in a given state S possess the same properties according
to CM. This feature can be formalized by introducing the following assumption.
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CMS. The set E of all properties is such that, for every E ∈ E and S ∈ S , either extS E =
US or extS E = ∅.

Let us consider the language L(x) in CM. Because of axiom CMS, the restriction of the
assignment function σ

ρ

S to Φ(x) does not depend on ρ, hence for every state S the wff α(x)

is true iff the physical sentence (∀x)α(x) associated with it is true. Thus, the notions of true
and certainly true coincide on Φ(x). Hence, the logical preorder and equivalence on Φ(x)

can be identified with the physical preorder and equivalence, respectively, so that the posets
(Φ(x)/ ≈,≺) and (Ψ/ ≡,<) can be identified with the Boolean lattice (Φ(x)/ ≡,<). Fur-
thermore, all these posets are order-isomorphic to (Pf ,⊆), which therefore is a Boolean
lattice.

Secondly, let us consider p-testability. It is well known that, in principle, CM assumes
that all properties can be simultaneously tested. This suggests one to introduce a further
assumption, as follows.

CMT. The set ΦT (x) of all p-testable wffs of Φ(x) coincides with Φ(x).

The above assumption implies ΨT = Ψ and Pf

T = Pf . Hence, (Pf

T ,⊆) is a Boolean lat-
tice, which explains the common statement that “the logic of a classical mechanical system
is a classical propositional logic” ([25], Chap. 5). However, this statement can be mislead-
ing, since it ignores a number of conceptual distinctions that we have pointed out in our
general framework.

6 Physical Propositions in Quantum Mechanics

Assumption CMS does not hold in (standard, Hilbert space) QM. Indeed, if E denotes a
property and S a state of the physical system Σ , the probability of getting result 1 (or 0)
when performing a registration by means of a device belonging to E on a sample of Σ

may be different both from 0 and from 1 in QM, which implies (via intended physical
interpretation) that ∅ �= extS E �= US . Hence, one cannot conclude, as in CM, that (Pf ,⊆)

is a Boolean lattice. Moreover, there are properties in QM that cannot be simultaneously
tested. Thus, neither assumption CMT holds, and one cannot assert that the sets Pf

T and Pf

coincide. In order to discuss the order structure of (Pf

T ,⊆) in QM, let us firstly introduce
the symbols and notions that will be used in the following.

H: the Hilbert space on the complex field associated with Σ .
(L(H),⊆) (briefly, L(H)): the complete, orthomodular, atomic lattice (which also has

the covering property; see, e.g., [3], Chap. 10) of all closed subspaces of H.
⊥, � and �: the orthocomplementation, the meet and the join, respectively, defined on

L(H).
A: the set of all atoms (one-dimensional subspaces) of L(H).
ϕ: the bijective mapping S → A of all (pure) states on the atoms of L(H).
χ : the bijective mapping E → L(H) of all properties on the closed subspaces of L(H).
≺: the order on E canonically induced, via χ , by the order defined on L(H).
⊥: the orthocomplementation on E canonically induced, via χ , by the orthocomplemen-

tation defined on L(H).
The mapping χ is an order isomorphism of (E,≺) onto (L(H),⊆) that preserves the

orthocomplementation, hence (E,≺) also is a complete, orthomodular, atomic lattice. We
call it the lattice of properties of Σ , and identify it with a (standard, sharp) QL. We then
introduce a further mapping

θ : E ∈ E → SE = {S ∈ S | ϕ(S) ⊆ χ(E)} ∈ P(S)
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(where P(S) denotes the power set of S) that associates every property E ∈ E with the set
of states that are represented by atoms included in the subspace χ(E). Let L(S) be the range
of θ . It is easy to see that also (L(S),⊆) is a lattice, isomorphic to (E,≺) and (L(H),⊆).
We still denote by ⊥ the orthocomplementation on (L(S),⊆) canonically induced, via θ , by
the orthocomplementation ⊥ defined on (E,≺), and call (L(S),⊆) the lattice of all ⊥-closed
subsets of S (for, if SE ∈ L(S), (S⊥

E )⊥ = SE).
The interpretations of (E,≺) and (L(H),⊆) then suggest identifying L(S) with the sub-

set of all p-testable propositions. This can be formalized by introducing the following as-
sumption.

QMT. Let α(x) ∈ ΦT (x), and let Eα ∈ E be such that α(x) ≡ Eα(x). Then, the physical
proposition pf

α of α(x) coincides with SEα in QM.

Assumption QMT has some relevant immediate consequences. In particular, it implies
that the equivalence relations ≡ and ≈ coincide on ΦT (x).4 Indeed, note firstly that the
bijectivity of the mapping χ entails that two properties E, F ∈ E coincide iff they are repre-
sented by the same subspace of L(H), hence iff SE = SF . Secondly, consider the wffs α(x),
β(x) ∈ ΦT (x) and let Eα , Eβ ∈ E be such that α(x) ≡ Eα(x) and β(x) ≡ Eβ(x). Then, the
following sequence of coimplications holds because of assumption QMT,

α(x) ≈ β(x) iff Eα(x) ≈ Eβ(x) iff pf
α = p

f

β iff SEα = SEβ
iff

Eα = Eβ iff Eα(x) ≡ Eβ(x) iff α(x) ≡ β(x),

which proves our statement.
More important for our aims in this paper, assumption QMT implies that the poset

(Pf

T ,⊆) of all p-testable physical propositions associated with wffs of ΦT (x) (equivalently,
with elementary wffs of Φ(x)) can be identified in QM with the lattice (L(S),⊆) of all
⊥-closed subsets of S . Hence the posets (ΦT (x)/ ≈,≺) and (Pf

T ,⊆), on one side, and the
lattices (L(S),⊆), (L(H),⊆) and (E,≺), on the other side, are order-isomorphic, and the
isomorphisms preserve the orthocomplementation (on (L(S),⊆), (L(H),⊆) and (E,≺))
or canonically induce it (on (ΦT (x)/ ≈,≺) and (Pf

T ,⊆)). We therefore denote orthocom-
plementation, meet and join in all these lattices by the same symbols (that is, ⊥, � and �,
respectively). Then, one can easily show that, for every α(x), β(x) ∈ ΦT (x),

S\pf
α ⊇ (pf

α )⊥ ∈ Pf

T ,

pf
α ∩ p

f

β = pf
α � p

f

β ∈ Pf

T ,

pf
α ∪ p

f

β ⊆ pf
α � p

f

β ∈ Pf

T .

We can now state our main result in this section. Indeed, the isomorphisms above allow
one to recover (standard, sharp) QL as a quotient algebra of wffs of L(x), identifying it
with (ΦT (x)/ ≈,≺). We stress that this identification has required four nontrivial steps:
(i)selecting p-testable wffs inside Φ(x); (ii)grouping p-testable wffs into classes of physical
rather than logical equivalence; (iii)adopting assumption QMT; (iv)identifying (L(S),⊆) and
(E,≺).

4The coincidence of ≡ and ≈ suggests that also the logical preorder < and the physical preorder ≺ may
coincide on ΦT (x) in QM. Indeed, this coincidence has been introduced as an assumption within the general
formulation of the SR interpretation of QM (see [14]). However, we do not need this assumption in the present
paper.
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The above result shows how the non-Boolean lattice of QL can be obtained without giv-
ing up classical semantics, which was our minimal aim in this paper. However, we have
already seen in the Introduction that it has a deeper meaning if one accepts the SR interpre-
tation of QM. Yet, it must be noted that no direct correspondence can be established between
the logical operations on Φ(x) and the lattice operations of QL. By comparing the relations
established in Sect. 3 and the relations above, one gets indeed that, for every α(x), β(x),
γ (x) ∈ ΦT (x),

α(x) ≡ ¬β(x) implies pf
α ⊆ S\pf

β ⊇ (p
f

β )⊥,

α(x) ≡ β(x) ∧ γ (x) implies pf
α = p

f

β ∩ pf
γ = p

f

β � pf
γ ,

α(x) ≡ β(x) ∨ γ (x) implies pf
α ⊇ p

f

β ∪ pf
γ ⊆ p

f

β � pf
γ

(see also [17]).

7 The Quantum Language LT Q(x)

The set ΦT (x) generally is not closed with respect to ¬, ∧ and ∨, in the sense that negation,
meet and join of testable wffs may be not testable. However, we can construct a language
LT Q(x) whose wffs are testable and whose connectives correspond to lattice operations of
QL, as follows.

(i) Let us take ΦT (x) (equivalently, the set E(x) of all elementary wffs of Φ(x)) as set of
elementary wffs, and introduce three new connectives ¬Q, ∧Q and ∨Q (quantum negation,
quantum meet and quantum join, respectively) and standard formation rules for quantum
well formed formulas (briefly, qwffs).

(ii) Let ΦT Q(x) be the set of all qwffs and let us define an assignment function τ
ρ

S on
ΦT Q(x) based on the assignment function σ

ρ

S defined on Φ(x). To this end, let us consider
the wffs α(x), β(x) ∈ ΦT (x) and let Eα , Eβ ∈ E be such that α(x) ≡ Eα(x) and β(x) ≡
Eβ(x). Then, for every ρ ∈ R and S ∈ S , we put

τ
ρ

S (α(x)) = σ
ρ

S (α(x)),

τ
ρ

S (¬Qα(x)) = t (or f ) iff σ
ρ

S (E⊥
α (x)) = t (or f ),

τ
ρ

S (α(x) ∧Q β(x)) = t (or f ) iff σ
ρ

S ((Eα � Eβ)(x)) = t (or f ),

τ
ρ

S (α(x) ∨Q β(x)) = t (or f ) iff σ
ρ

S ((Eα � Eβ)(x)) = t (or f ).

It is apparent that ¬Qα(x), α(x) ∧Q β(x) and α(x) ∨Q β(x) are logically equivalent to
wffs of ΦT (x). Therefore the above semantic rules can be applied recursively by considering
α(x), β(x) ∈ ΦT Q(x), which defines τ

ρ

S on ΦT Q(x). Hence, the notions of logical preorder
< and logical equivalence ≡ can be extended to ΦT Q(x), and every qwff is logically equiv-
alent to a wff of E(x) (hence of ΦT (x)).

(iii) Let us associate a physical sentence (∀x)α(x) with every qwff α(x) ∈ ΦT Q(x).
Hence the notions of certainly true, physical preorder ≺ and physical equivalence ≈ can be
introduced on ΦT Q(x). Furthermore ≡ and ≈ coincide on ΦT Q(x), since they coincide on
ΦT (x) (Sect. 6).

(iv) For every α(x) ∈ ΦT Q(x), let us define the physical proposition pf
α = {S ∈ S | α(x)

is certainly true in S} of α(x). Then, the set of all physical propositions associated with
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qwffs of ΦT Q(x) coincides with Pf

T . Moreover, the semantic rules established above entail
that, for every α(x), β(x), γ (x) ∈ ΦT Q(x),

α(x) ≡ ¬Qβ(x) iff pf
α = (p

f

β )⊥,

α(x) ≡ β(x) ∧Q γ (x) iff pf
α = p

f

β � pf
γ , 5

α(x) ≡ β(x) ∨Q γ (x) iff pf
α = p

f

β � pf
γ .

(The proof of these coimplications is straightforward if one preliminarily notices that, for
every E, F ∈ E the physical propositions of E⊥(x), (E � F)(x) and (E � F)(x) are (p

f

E)⊥,
p

f

E � p
f

F and p
f

E � p
f

F , respectively, because of the definitions of ⊥, � and � on E and
assumption QMT.)

We have thus constructed a language LT Q(x) whose connectives correspond to lattice
operations on QL, as desired. It must be stressed, however, that the semantic rules for quan-
tum connectives have an empirical character since they depend on the empirical relations
on the set of all properties, and that these rules coexist with the semantic rules for classical
connectives in our approach.

Finally, we note that, for every α(x), β(x) ∈ ΦT Q(x), the following logical equivalence
can be proved,

α(x) ∨Q β(x) ≡ ¬Q((¬Qα(x)) ∧Q (¬Qβ(x))),

and a quantum implication connective →Q can be introduced such that

α(x) →Q β(x) ≡ (¬Qα(x)) ∨Q (α(x) ∧Q β(x)).

The formal structure of the above logical equivalences is well known in QL. The novelty
here is that α(x) and β(x) are sentences referring to individual samples of physical objects,
while the wffs of standard QL represent propositions and do not bear this interpretation.

8 Quantum Truth

The notion of true with certainty is defined in Sect. 2 for all wffs of L∗(x). Yet, only testable
wffs of L∗(x) can be associated with empirical procedures that allow one to check whether
they are certainly true or not.

For the sake of simplicity, let us restrict here to the sublanguage L(x) of L∗(x) and to the
subset ΦT (x) ⊆ Φ∗

T (x) of p-testable wffs (Sect. 4). Then, the notion of certainly true can be
worked out in QM in order to define a notion of quantum truth (briefly, Q-truth) on ΦT (x),
as follows.

QT. Let α(x) ∈ ΦT (x) and S ∈ S . We put

α(x) is Q-true in S iff S ∈ pf
α ,

5Note that, if α(x), β(x) ∈ ΦT (x), the second implication at the end of Sect. 6 shows that the physical
proposition of α(x) ∧ β(x) is identical to the physical proposition of α(x) ∧Q β(x), which implies α(x) ∧
β(x) ≈ α(x)∧Q β(x). Yet, one cannot assert in this case that α(x)∧β(x) ≡ α(x)∧Q β(x), since α(x)∧β(x)

does not necessarily belong to ΦT (x). The difference between ∧ and ∧Qwas overlooked in a recent paper
[17], and we thank S. Sozzo for bringing such issue to our attention.



102 Int J Theor Phys (2008) 47: 90–103

α(x) is Q-false in S iff S ∈ (pf
α )⊥,

α(x) has no Q-truth value in S iff S ∈ S\pf
α ∪ (pf

α )⊥.

Bearing in mind our definitions and results in Sects. 3, 4 and 6, we get

α(x) is Q-true in S iff α(x) is certainly true in S iff (∀x)α(x) is true in S iff

Eα(x) is certainly true in S iff (∀x)Eα(x) is true in S.

The notion of Q-false has not yet an interpretation at this stage. However, we get from its
definition

α(x) is Q-false in S iff E⊥
α (x) is certainly true in S iff (∀x)E⊥

α (x) is true in S.

Let us remind now that, for every E ∈ E , the property denoted by E⊥ is usually inter-
preted in the physical literature as the equivalence class of registering devices obtained by
reversing the roles of the outcomes 1 and 0 in all registering devices in E (we stress that we
are considering properties here, not generic effects). This suggests one to add the following
assumption to our scheme.

QMN. Let E ∈ E . Then, E⊥(x) ≡ ¬E(x).

Assumption QMN implies

α(x) is Q-false in S iff (∀x)¬Eα(x) is true in S iff (∀x)¬α(x) is true in S iff

¬α(x) is certainly true in S,

hence we say that α(x) is certainly false in S iff it is Q-false in S.
The above terminology implies that α(x) has no Q-truth value in S iff α(x) is neither

certainly true nor certainly false in S. We also say in this case that α(x) is Q-indeterminate
in S.

It is now apparent that the notions of truth and Q-truth coexist in our approach. This
realizes an integrated perspective, according to which the classical and the quantum no-
tions of truth are not incompatible. Our approach also explains the “metaphysical disaster”
mentioned in the Introduction [24] as following from attributing truth values that refer to
quantified wffs of a first order predicate calculus to open wffs of the calculus itself.

Let us conclude our paper with some additional remarks.
Firstly, the notion of Q-truth introduced above applies to a fragment only (the set

ΦT (x) ⊆ Φ(x)) of the language L(x). If one wants to introduce this notion on the set of
all wffs of a suitable quantum language, one can refer to the language LT Q(x) constructed
in Sect. 7. Then, all qwffs are testable, and definition QT can be applied in order to define
Q-truth on LT Q(x) by simply substituting ΦT Q(x) to ΦT (x) in it. Again, classical truth and
Q-truth can coexist on LT Q in our approach.

Secondly, definition QT can be physically justified by observing that most manuals and
books on the foundations of QM introduce (usually implicitly) a verificationist notion of
truth that can be summarized in our present terms as follows.

QVT. Let α(x) ∈ Φ(x) and S ∈ S . Then, α(x) is true (false) in S iff:
(i) α(x) is testable;
(ii) α(x) can be tested and found to be true (false) on a physical object in the state S

without altering S.
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It can be proved that the notion of truth introduced by definition QVT and the notion of
Q-truth introduced by definition QT coincide. The proof is rather simple but requires some
use of the theoretical apparatus of QM [16].

Finally, a further justification of definition QT can be given by noting that the notion
of true with certainty translates in our context the notion of certain, or true, introduced in
some partially axiomatized approaches to QM (as [23]).
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